34 research outputs found

    An Invitation to Higher Gauge Theory

    Get PDF
    In this easy introduction to higher gauge theory, we describe parallel transport for particles and strings in terms of 2-connections on 2-bundles. Just as ordinary gauge theory involves a gauge group, this generalization involves a gauge '2-group'. We focus on 6 examples. First, every abelian Lie group gives a Lie 2-group; the case of U(1) yields the theory of U(1) gerbes, which play an important role in string theory and multisymplectic geometry. Second, every group representation gives a Lie 2-group; the representation of the Lorentz group on 4d Minkowski spacetime gives the Poincar\'e 2-group, which leads to a spin foam model for Minkowski spacetime. Third, taking the adjoint representation of any Lie group on its own Lie algebra gives a 'tangent 2-group', which serves as a gauge 2-group in 4d BF theory, which has topological gravity as a special case. Fourth, every Lie group has an 'inner automorphism 2-group', which serves as the gauge group in 4d BF theory with cosmological constant term. Fifth, every Lie group has an 'automorphism 2-group', which plays an important role in the theory of nonabelian gerbes. And sixth, every compact simple Lie group gives a 'string 2-group'. We also touch upon higher structures such as the 'gravity 3-group' and the Lie 3-superalgebra that governs 11-dimensional supergravity.Comment: 60 pages, based on lectures at the 2nd School and Workshop on Quantum Gravity and Quantum Geometry at the 2009 Corfu Summer Institut

    Graph products of spheres, associative graded algebras and Hilbert series

    Full text link
    Given a finite, simple, vertex-weighted graph, we construct a graded associative (non-commutative) algebra, whose generators correspond to vertices and whose ideal of relations has generators that are graded commutators corresponding to edges. We show that the Hilbert series of this algebra is the inverse of the clique polynomial of the graph. Using this result it easy to recognize if the ideal is inert, from which strong results on the algebra follow. Non-commutative Grobner bases play an important role in our proof. There is an interesting application to toric topology. This algebra arises naturally from a partial product of spheres, which is a special case of a generalized moment-angle complex. We apply our result to the loop-space homology of this space.Comment: 19 pages, v3: elaborated on connections to related work, added more citations, to appear in Mathematische Zeitschrif

    Convex domains of Finsler and Riemannian manifolds

    Full text link
    A detailed study of the notions of convexity for a hypersurface in a Finsler manifold is carried out. In particular, the infinitesimal and local notions of convexity are shown to be equivalent. Our approach differs from Bishop's one in his classical result (Bishop, Indiana Univ Math J 24:169-172, 1974) for the Riemannian case. Ours not only can be extended to the Finsler setting but it also reduces the typical requirements of differentiability for the metric and it yields consequences on the multiplicity of connecting geodesics in the convex domain defined by the hypersurface.Comment: 22 pages, AMSLaTex. Typos corrected, references update

    Braided Matrix Structure of the Sklyanin Algebra and of the Quantum Lorentz Group

    Full text link
    Braided groups and braided matrices are novel algebraic structures living in braided or quasitensor categories. As such they are a generalization of super-groups and super-matrices to the case of braid statistics. Here we construct braided group versions of the standard quantum groups Uq(g)U_q(g). They have the same FRT generators l±l^\pm but a matrix braided-coproduct \und\Delta L=L\und\tens L where L=l+SlL=l^+Sl^-, and are self-dual. As an application, the degenerate Sklyanin algebra is shown to be isomorphic to the braided matrices BMq(2)BM_q(2); it is a braided-commutative bialgebra in a braided category. As a second application, we show that the quantum double D(\usl) (also known as the `quantum Lorentz group') is the semidirect product as an algebra of two copies of \usl, and also a semidirect product as a coalgebra if we use braid statistics. We find various results of this type for the doubles of general quantum groups and their semi-classical limits as doubles of the Lie algebras of Poisson Lie groups.Comment: 45 pages. Revised (= much expanded introduction

    Representations of the Weyl Algebra in Quantum Geometry

    Get PDF
    The Weyl algebra A of continuous functions and exponentiated fluxes, introduced by Ashtekar, Lewandowski and others, in quantum geometry is studied. It is shown that, in the piecewise analytic category, every regular representation of A having a cyclic and diffeomorphism invariant vector, is already unitarily equivalent to the fundamental representation. Additional assumptions concern the dimension of the underlying analytic manifold (at least three), the finite wide triangulizability of surfaces in it to be used for the fluxes and the naturality of the action of diffeomorphisms -- but neither any domain properties of the represented Weyl operators nor the requirement that the diffeomorphisms act by pull-backs. For this, the general behaviour of C*-algebras generated by continuous functions and pull-backs of homeomorphisms, as well as the properties of stratified analytic diffeomorphisms are studied. Additionally, the paper includes also a short and direct proof of the irreducibility of A.Comment: 71 pages, 1 figure, LaTeX. Changes v2 to v3: previous results unchanged; some addings: inclusion of gauge transforms, several comments, Subsects. 1.5, 3.7, 3.8; comparison with LOST paper moved to Introduction; Def. 2.5 modified; some typos corrected; Refs. updated. Article now as accepted by Commun. Math. Phy

    Classification of Algebraic Complexes

    No full text

    Whitehead Problems for Words in

    No full text
    We solve the Whitehead problem for automorphisms, monomorphisms and endomorphisms in Zm Fn after giving an explicit description of each of these families of transformations.Peer ReviewedPostprint (author’s final draft
    corecore